Pemetaan Dinamika Perubahan Tutupan Kawasan Mangrove Berbasis Pendekatan Komputasi Awan di Teluk Pacitan
Mapping of The Dynamic Changes Coverage of Mangrove Area Based on A Cloud Computation Approach in Pacitan Bay
DOI:
https://doi.org/10.37875/hidropilar.v9i1.279Keywords:
Mangrove, Komputasi Awan, Google Earth Engine, Random ForestAbstract
Mangrove sebagai kawasan yang dicirikan sebagai lahan basah di wilayah intertidal di sepanjang garis pantai memiliki peran penting bagi kehidupan dan penghidupan manusia karena layanan yang diberikannya sebagai daerah pemijahan ikan (nursery ground), tempat mencari makan (feeding ground), daerah pentangkapan ikan (fishing ground), serta cagar alam, retensi sedimen dan pelindung alami terhadap berbagai bencana alam seperti siklon dan tsunami. Peran penting tersebut belum terjaga dengan memadai sehingga dibeberapa lokasi di belahan bumi kawasan mangrove mengalami penyusutan akibat proses antropogenik maupun perubahan lingkungan global. Monitoring secara berkala diperlukan untuk menjaga ekosistem mangrove. Penginderaan jauh menjadi metode yang efektif dalam memetakan areal mangrove secara cepat dan efisien, terutama dengan berkembangnya teknologi pemetaan berbasis komputasi awan (cloud computing). Melalui perangkat google earth engine (GEE) artikel ini melakukan studi di Teluk Pacitan dengan ekstraksi terhadap luasan tutupan mangrove pada tahun 2016 sampai dengan 2022 menggunakan citra satelit Sentinel-2 MSI Level-2A, dengan menggunakan algoritma random forest. Luasan mangrove yang dapat diekstraksi adalah 0,57 Hektar di tahun 2016 dan meningkat menjadi 2,2 hektar di tahun 2022. Berdasarkan sampel yang digunakan, dipilih 80% dari total sampel digunakan untuk training, dan 20% untuk testing. Berdasarkan hasil perhitungan Validation overall accuracy, hasil ekstraksi tahun 2016 mencapai nilai 0,996, dan pada tahun 2022 mencapai nilai 0,966.
References
Altamirano, J. P., Primavera, J. H., Banaticla, M. R. N., & Kurokura, H. (2010). Practical techniques for mapping small patches of mangroves. Wetlands Ecology and Management, 18(6), 707–715. https://doi.org/10.1007/s11273-010-9190-2
Bryan-Brown, D. N., Connolly, R. M., Richards, D. R., Adame, F., Friess, D. A., & Brown, C. J. (2020). Global trends in mangrove forest fragmentation. Scientific Reports, 10(1), 1–8. https://doi.org/10.1038/s41598-020-63880-1
Choirunnisa, L. A. D., & Gravitiani, E. (2022). Aplikasi Benefit Transfer Pada Pengelolaan Ekosistem Mangrove Pesisir Kabupaten Pacitan Berdasarkan Pendekatan Circular Economy. Jurnal Kebijakan Sosial Ekonomi Kelautan Dan Perikanan, 12(1), 65. https://doi.org/10.15578/jksekp.v12i1.10048
Cissell, J. R., & Steinberg, M. K. (2019). Mapping forty years of mangrove cover trends and their implications for flats fisheries in Ciénaga de Zapata, Cuba. Environmental Biology of Fishes, 102(2), 417–427. https://doi.org/10.1007/s10641-018-0809-0
D’Iorio, M., Jupiter, S. D., Cochran, S. A., & Potts, D. C. (2007). Optimizing remote sensing and GIS tools for mapping and managing the distribution of an invasive mangrove (Rhizophora mangle) on South Molokai, Hawaii. Marine Geodesy, 30(1–2), 125–144. https://doi.org/10.1080/01490410701296663
Foster-Smith, R. L., & Sotheran, I. S. (2003). Mapping marine benthic biotopes using acoustic ground discrimination systems. International Journal of Remote Sensing, 24(13), 2761–2784. https://doi.org/10.1080/0143116031000066323
Ghorbanian, A., Zaghian, S., Asiyabi, R. M., Amani, M., Mohammadzadeh, A., & Jamali, S. (2021). Mangrove ecosystem mapping using sentinel-1 and sentinel-2 satellite images and random forest algorithm in google earth engine. Remote Sensing, 13(13), 1–18. https://doi.org/10.3390/rs13132565
Green, E. P., Clark, C. D., Mumby, P. J., Edwards, A. J., & Ellis, A. C. (1998). Remote sensing techniques for mangrove mapping. International Journal of Remote Sensing, 19(5), 935–956. https://doi.org/10.1080/014311698215801
Jia, M., Wang, Z., Li, L., Song, K., Ren, C., Liu, B., & Mao, D. (2014). Mapping China’s mangroves based on an object-oriented classification of Landsat imagery. Wetlands, 34(2), 277–283. https://doi.org/10.1007/s13157-013-0449-2
Kamal, M., Farda, N. M., Jamaluddin, I., Parela, A., Wikantika, K., Prasetyo, L. B., & Irawan, B. (2020). A preliminary study on machine learning and google earth engine for mangrove mapping. IOP Conference Series: Earth and Environmental Science, 500(1). https://doi.org/10.1088/1755-1315/500/1/012038
Kamal, M., Jamaluddin, I., Parela, A., & Farda, N. M. (2020). Comparison of Google Earth Engine (GEE)-based machine learning classifiers for mangrove mapping. 40th Asian Conference on Remote Sensing, ACRS 2019: Progress of Remote Sensing Technology for Smart Future, October.
Kenduiywo, B. K., Mutua, F. N., Ngigi, T. G., & Waithaka, E. H. (2020). Mapping mangrove forest using Landsat 8 to support estimation of land-based emissions in Kenya. Modeling Earth Systems and Environment, 6(3), 1619–1632. https://doi.org/10.1007/s40808-020-00778-x
Khakhim, N., Lazuardi, W., Wicaksono, A., Pratama, D. N. D., & Musthofa, A. (2021). Priority areas for mangrove conservation to support disaster mitigation efforts in pacitan bay. International Journal of Safety and Security Engineering, 11(5), 593–603. https://doi.org/10.18280/IJSSE.110511
Koch, E. W., Barbier, E. B., Silliman, B. R., Reed, D. J., Perillo, G. M. E., Hacker, S. D., Granek, E. F., Primavera, J. H., Muthiga, N., Polasky, S., Halpern, B. S., Kennedy, C. J., Kappel, C. V., & Wolanski, E. (2009). Non-linearity in ecosystem services: Temporal and spatial variability in coastal protection. Frontiers in Ecology and the Environment, 7(1), 29–37. https://doi.org/10.1890/080126
Lu, Y., & Wang, L. (2021). How to automate timely large-scale mangrove mapping with remote sensing. Remote Sensing of Environment, 264(January), 112584. https://doi.org/10.1016/j.rse.2021.112584
Parida, B. R., & Kumar, P. (2020). Mapping and dynamic analysis of mangrove forest during 2009–2019 using landsat–5 and sentinel–2 satellite data along Odisha Coast. Tropical Ecology, 61(4), 538–549. https://doi.org/10.1007/s42965-020-00112-7
Pimple, U., Simonetti, D., Sitthi, A., Pungkul, S., Leadprathom, K., Skupek, H., Som-ard, J., Gond, V., & Towprayoon, S. (2018). Google Earth Engine Based Three Decadal Landsat Imagery Analysis for Mapping of Mangrove Forests and Its Surroundings in the Trat Province of Thailand. Journal of Computer and Communications, 06(01), 247–264. https://doi.org/10.4236/jcc.2018.61025
Prasetyo, I., Pranowo, W. S., Tobing, C. L., Kurniawan, A., & Puliwarna, T. (2021). ANALISIS MANGROVE DARI CITRA SATELIT SEBAGAI PERTAHANAN PANTAI DENGAN MENGGUNAKAN PENDEKATAN CLOUD COMPUTING. Jurnal Chart Datum, 7(1), 47–62.
Purwanto, A. D., Wikantika, K., Deliar, A., & Darmawan, S. (2023). Decision Tree and Random Forest Classification Algorithms for Mangrove Forest Mapping in Sembilang National Park, Indonesia. Remote Sensing, 15(1). https://doi.org/10.3390/rs15010016
Richards, D. R., & Friess, D. A. (2016). Rates and drivers of mangrove deforestation in Southeast Asia, 2000-2012. Proceedings of the National Academy of Sciences of the United States of America, 113(2), 344–349. https://doi.org/10.1073/pnas.1510272113
Roy, S., Mahapatra, M., & Chakraborty, A. (2019). Mapping and monitoring of mangrove along the Odisha coast based on remote sensing and GIS techniques. Modeling Earth Systems and Environment, 5(1), 217–226. https://doi.org/10.1007/s40808-018-0529-7
Salghuna, N. N., & Pillutla, R. C. P. (2017). Mapping Mangrove Species Using Hyperspectral Data: A Case Study of Pichavaram Mangrove Ecosystem, Tamil Nadu. Earth Systems and Environment, 1(2), 1–12. https://doi.org/10.1007/s41748-017-0024-8
Sharifi, A., Felegari, S., & Tariq, A. (2022). Mangrove forests mapping using Sentinel-1 and Sentinel-2 satellite images. Arabian Journal of Geosciences, 15(20). https://doi.org/10.1007/s12517-022-10867-z
Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V. H., Castañeda-Moya, E., Thomas, N., & Van der Stocken, T. (2019). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience, 12(1), 40–45. https://doi.org/10.1038/s41561-018-0279-1
Suardana, A. A. M. A. P., Anggraini, N., Nandika, M. R., Aziz, K., As-syakur, A. R., Ulfa, A., Wijaya, A. D., Prasetio, W., Winarso, G., & Dewanti, R. (2023). Estimation and Mapping Above-Ground Mangrove Carbon Stock Using Sentinel-2 Data Derived Vegetation Indices in Benoa Bay of Bali Province, Indonesia. Forest and Society, 7(1), 116–134. https://doi.org/10.24259/fs.v7i1.22062
Sukandar, Dewi, C. S. U., Haq, R. S. Q., Harsindhi, C. J., & Fatmawati, R. (2017). Ekowisata pesisir dan laut jawa timur (pacitan, trenggalek dan tulungagung). Bidang Kelautan, Pesisir, dan Pengawasan DINAS KELAUTAN DAN PERIKANAN PROVINSI JAWA TIMUR.
Thomas, N., Lucas, R., Itoh, T., Simard, M., Fatoyinbo, L., Bunting, P., & Rosenqvist, A. (2015). An approach to monitoring mangrove extents through time-series comparison of JERS-1 SAR and ALOS PALSAR data. Wetlands Ecology and Management, 23(1), 3–17. https://doi.org/10.1007/s11273-014-9370-6
Wibowo, T. W., Mardiatno, D., & Sunarto, S. (2017). Pemetaan Risiko Tsunami terhadap Bangunan secara Kuantitatif. Majalah Geografi Indonesia, 31(2), 68–78. https://doi.org/10.22146/mgi.28044
Yamamoto, Y. (2023). Living under ecosystem degradation: Evidence from the mangrove–fishery linkage in Indonesia. Journal of Environmental Economics and Management, 118(January), 102788. https://doi.org/10.1016/j.jeem.2023
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jurnal Hidropilar
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.