PEMBUATAN ELECTRONIC NAVIGATION CHART (ENC) MENGGUNAKAN PERANGKAT LUNAK CARIS S-57 COMPOSER (STUDI KASUS DI PERAIRAN SUNGAI JAMBI)

ELECTRONIC NAVIGATION CHART (ENC) USING CARIS S-57 COMPOSER SOFTWARE (CASE STUDY IN THE JAMBI RIVER WATERS)

Hasan Abdussalam¹, Heru Kurniawan², & Eko Bayu Dharma Putra³

¹Prodi D3 Hidro-Oseanografi, STTAL ²Pusat Hidrografi dan Oseanografi TNI Angkatan Laut (Pushidrosal) ³Dinas Pemetaan Pusat Hidro-Oseanografi TNI Angkatan Laut, Dispeta Pushidrosal

email: kakanghasan31@gmail.com

ABSTRAK

Menurut konvensi Safety of Life at Sea (SOLAS), semua kapal harus memiliki *Electronic Navigation Chart* (ENC) dengan menggunakan *Electronic Chart Display and Information System* (ECDIS) sesuai standar IHO yang akan berlaku pada tahun 2018. Tujuan yang ingin dicapai dari kegiatan pembuatan ENC adalah tersedianya peta laut navigasi elektronik (ENC) di Perairan Sungai Jambi yang sesuai dengan standar produk ENC S-57 edisi 3.1. Kegiatan pembuatan ENC menggunakan data peta laut Indonesia nomor 48 Sungai Jambi skala 1 : 50.000 edisi ke 9 koreksi BPI sampai dengan Desember 2017 dalam format*.Jpg yang diperoleh dari Dinas Peta Pusat Hidro-Oseanografi. Metode yang digunakan adalah dengan mendigitasi langsung lembar lukis teliti berupa raster menggunakan perangkat lunak *Caris* S-57 *Composer*. Hasil dari proses digitasi tersebut dikoreksi dengan optimasi, validasi dan analisa sesuai refensi S-58 sampai tidak ada nilai kesalahan yang muncul. Tampilan ENC sesuai dengan dokumen ENC S-52, sehingga peta ENC dapat digunakan pada ECDIS sebagai sarana bantu navigasi elektronik. ENC Sungai Jambi telah tersedia sehingga dapat digunakan oleh berbagai macam jenis kapal yang telah menggunakan ECDIS untuk berlayar di daerah tersebut.

Kata kunci: ENC, Caris S-57 Composer, Sungai Jambi, ECDIS.

ABSTRACT

According to Rail Safety of Life at Sea (SOLAS), all vessels must have Electronic Navigation Chart (ENC) using electronic chart display and information system (ECDIS) according to standards IHO that will take effect in 2018. The aim of the activity of making ENC is the availability of marine electronic navigation chart (ENC) in the Jambi river to standard products ENC S-57 edition 3.1. ENC manufacturing activities using marine map data Indonesia number 48 Sungai Jambi scale of 1 : 50.000 edition in December 2017 in the format * .Jpg obtained from the Office Map Hydro-Oceanographic Centre. The method

used is to directly digitize a map using software raster sea Caris S-57 Composer. The results of the digitization process is corrected by the optimization, validation and analysis of suitable reference point S-58 until no errors appear value. ENC display according to the document ENC S-52, where the map ENC can be used in ECDIS as a means of electronic navigation aids. ENC Jambi river has been provided so that it can be used by various types of vessels that have been using ECDIS for sailing in the area.

Keywords : ENC, Caris S-57 Composer, Jambi river, ECDIS.

PENDAHULUAN

Berdasarkan KEPMENHUB Nomor KM 262 TAHUN 2019. Perairan Pelabuhan Muara Sabak telah ditetapkan sebagai Perairan Pandu Luar dalam rangka menjamin aspek keselamatan dan keamanan pelayaran, kelancaran terkait peningkatan kepadatan lalu lintas kapal serta berdasarkan hasil penelitian. evaluasi dan verifikasi terhadap kondisi alur pelayaran wilayah. Seperti yang diketahui, Jambi terbagi oleh beberapa sungai dengan banyak kedangkalan yang tersebar di sebagian besar wilayah perairannya.

Peta laut (nautical chart) merupakan sebuah peta yang dirancang secara spesifik sesuai S-4 International Hydrographic Organization (IHO) untuk navigasi memenuhi kebutuhan laut dengan menampilkan objek-objek seperti kedalaman dari permukaan air, bahayabahaya navigasi, bentuk dasar laut, SBNP (sarana bantu navigasi pelayaran), fitur-fitur kultur laut dan beberapa detail topografi yang bermanfaat untuk navigasi laut. Peta navigasi laut konvensional (paper chart) yang selama ini digunakan oleh para pelaut, cepat atau lambat akan digantikan oleh peta navigasi laut elektronik Electronic Navigational Chart (ENC). Pekerjaan-pekerjaan manual

cenderung dibatasi untuk mengurangi bahkan meniadakan sama sekali kesalahan-kesalahan yang disebabkan oleh faktor manusia (*human errors*).

Seiring perkembangannya, teknologi untuk mendukung bernavigasi di laut saat ini sudah mengacu pada era Dimana peta elektronik atau digital. sering juga disebut dengan ENC sudah banyak digunakan. ENC ditampilkan dalam sistem informasi elektronik berupa ECDIS (Electronic Chart Display and Information System). ENC adalah peta vektor resmi berbasis peta elektronik sesuai dengan vang persyaratan konvensi Safety of Life at Sea (SOLAS). ENC berisikan data digital sesuai standar Spesifikasi Produk ENC IHO S-57, yang menyimpan seluruh objek-objek yang relevan yang telah dipetakan untuk keselamatan navigasi.

Keselamatan pelayaran sangat dipengaruhi oleh kualitas data peta suatu wilayah. Data peta yang terdapat di dalamnya harus mutakhir atau data yang diberikan adalah data terbaru dan benar, informasi diberikan tidak iika yang mutakhir maka peta laut tersebut menjadi berbahaya dan berpengaruh pada keselamatan pelayaran kapal.

International Maritime Organization (IMO) dalam konvensi SOLAS menjelaskan bahwa kapal-kapal harus menggunakan peta laut dengan menggunakan ECDIS sesuai standar.

Hadirnya *electronic chart* yaitu untuk menggantikan paper fungsi chart. keinginan dan harapan akan hadirnya electronic chart tersebut sudah dinantikan oleh para pelaut serta orang-orang yang berkecimpung di bidang kelautan (para hidrografer, pakar-pakar navigasi, dan sebagainya), maupun badan-badan internasional berkepentingan yang seperti IHO dan IMO. Terealisasinya hal tersebut didukung oleh kemajuan yang pesat pada bidang teknik produksi dengan bantuan komputer, peralatan navigasi elektronik, serta teknologi video display. Dengan digunakannya electronic chart pada kapal-kapal, diharapkan keselamatan pelayaran menjadi lebih terjamin.

Permasalahan yang timbul saat ini adalah ketersediaan peta laut elektronik dengan skala Harbour di wilayah perairan Jambi masih belum memadai. Lembaga negara yang memiliki otoritas dalam melaksanakan survei pemetaan dan pembuatan serta publikasi peta laut adalah Pusat Hidrografi dan Oseanografi TNI Angkatan Laut (Pushidrosal). Berdasarkan uraian tersebut di atas, maka perlu kiranya untuk melakukan pembuatan peta laut navigasi elektronik (ENC) yang sesuai standarisasi IHO S-57 sebagai sarana keselamatan bantu navigasi kapal.

Adapun tujuan dari penelitian ini adalah sebagai berikut:

a. Untuk melengkapi ketersediaan ENC diperairan Sungai Jambi dengan skala Harbour.

b. Untuk memberikan pengetahuan tentang tahapan proses pembuatan ENC sesuai standar IHO menggunakan perangkat lunak Caris S-57 Composer sehingga dapat ditampilkan di monitor ECDIS.

METODE DAN BAHAN

Lokasi Penelitian

Lokasi penelitian yang digunakan adalah Perairan Sumatera Jambi. Peta laut yang digunakan adalah peta laut nomor 48 edisi ke 9 dengan skala 1 : 50.000 tahun 2017. Peta tersebut berasal dari Dinas Pemetaan Pushidrosal. Berikut ini adalah gambar lokasi penelitian yang akan dilakukan oleh penulis berikut, dapat dilihat pada Gambar 1.

Koordinat Batas Lokasi Penelitian :

- a. 01° 13' 47" U 103° 46' 00" T
- b. 01° 13' 47" U 103° 59' 00" T
- c. 01° 07' 30" U 103° 59' 33" T
- d. 01° 07' 30" U 103° 46' 53"
- Т

Gambar 1. Peta Batas area lokasi penelitian. (Sumber: Peta Laut Indonesia 48, Edisi pengeluaran ke 9 koreksi BPI sd Desember 2017)

Bahan Penelitian

Metode digunakan dalam yang pengumpulan data sebagai bahan penelitian merupakan data sekunder didapatkan dengan yang cara berkoordinasi terhadap instansi-instansi terkait data-data tersebut. Penjelasan mengenai data-data tersebut sebagai berikut :

a. Data Lembar Lukis Teliti Perairan Sungai Jambi didapatkan dari Pushidrosal Pusat Hidrografi dan Oseanografi TNI AL.

b. Peta Laut Indonesia nomor 48 Sungai Jambi skala 1:50.000 pengeluaran ke 9 Desember tahun 2017, diproduksi oleh Dinas peta Pusat Hidro-Oseanografi TNI AL.

b. BPI (Berita Pelaut Indonesia)
tahun 2017 didapatkan dari Dinasnautika
Pusat Hidro-Oseanografi TNI AL.

c. Citra satelit yang didownload dari website landsat catalog lapan dengan tanggal perekaman 21 September 2021.

e. Magnetic Variation tahun 2019 yang dikeluarkan NOAA (*National Oseanic and Atmosferic Administration*).

Tahap Pelaksanaan

Pengolahan data dilakukan dengan menggunakan perangkat lunak Caris S-57 Composer dengan input data spasial dari peta Laut Indonesia no.48 Sungai Jambi, Citra Satelit Sungai Jambi dan Lembar Lukis Teliti Survei Batimetri Sungai Jambi. Kaidah-kaidah kartografi yang dimaksud yaitu generalisasi, kompilasi, seleksi, dan simbolisasi. Generalisasi dalam hal ini harus menjamin bahwa peta merupakan refleksi dari geospasial variabilitas di permukaan bumi dan karakteristik yang diwakili untuk menghasilkan visualisasi, dan penyajian simbol grafis objek data.

Proses pembuatan ENC meliputi kegiatan yang sangat panjang di mulai dari survei, pengolahan, pembuatan peta kertas format digital hingga konversi ke format S-57, idealnya di setiap seksi terdapat beberapa tahapan atau prosedur operasi standar yang harus dilaksanakan oleh setiap personelnya untuk menjaga keakuratan dan konsistensi data dengan berprinsip pada keamanan pelayaran. Dalam pembuatan ENC, proses pembuatannya mengacu pada ketentuan yang telah dikeluarkan oleh IHO. Proses Input dilakukan oleh Caris S-57 Composer dari jumlah keseluruhan. Cell ENC tersebut dengan tipe skala Coastal, Approach dan Harbour untuk liputan di Perairan Indonesia, termasuk Perairan Sungai Jambi atau Peta Laut Indonesia nomor 48.

Ketentuan yang telah dikeluarkan IHO untuk pembuatan ENC antara lain seperti S-57 yang merupakan standar untuk pembuatan peta digital S-57, S-58 yang merupakan Validation Check untuk ENC, dan S-52 yang merupakan ketentuan agar ENC dapat ditampilkan pada perangkat ECDIS, serta S-63 merupakan standar untuk perlindungan informasi ENC termasuk perlindungan pembajakan akses selektif. dan

Diagram Alir Penelitian

Adapun diagram alir penelitian ini dapat dilihat pada Gambar 2.

Gambar 2 Diagram Alir Penelitian.

Analisis dan Pembahasan Pembuatan *Cell* ENC

Proses pembuatan cell ENC baru menggunakan perangkat lunak Caris S-57 Composer dengan mengisi data informasi yang harus dilengkapi saat membuat cell baru.

M_COVER

M COVER Pembuatan pada software Caris S-57 Composer berfungsi sebagai garis tepi batasan area kerja dari pembuatan ENC di Perairan Sungai Jambi. Perhatikan bahwa cell ENC harus sepenuhnya tertutup oleh objek M COVER. Area yang berisi data harus dicakup oleh M COVER dengan CATCOV = 1"Coverage Available" (cakupan teresedia). Area kumpulan data yang tidak berisi data harus dicakup menggunakan objek meta M COVER,

dengan atribut CATCOV =2 "No (tidak Coverage Available" tersedia Tidak boleh meninggalkan cakupan). "lubang", agar pengguna ECDIS akan memiliki data tujuan navigasi yang lebih besar yang tersedia. Area yang belum disurvei area tanpa informasi survei batimetri, dan termasuk dalam area meta obiek M COVER dengan atribut CATCOV = 1 (cakupan tersedia), harus dikodekan menggunakan kelas objek UNSARE. Gambar 3 hasil pembuatan M COVER baru.

Gambar 3. *M_COVER* Batasan Area.

Langkah berikutnya mendigitasi semua objek Line (COALNE) yang ada di LLT berbentuk garis (line) dengan memilih object acronym dan mengisi attributes sesuai dengan standar IHO yaitu S-57. Garis pantai dengan nama acronym COALNE merupakan batas pertemuan antara bagian laut dan daratan pada saat terjadi air laut pasang tertinggi. Pada bagian ini setiap garis pantai harus tertutup mengacu pada ketentuan S-57 IHO tentang standarisasi pembuatan ENC. Jika diharuskan untuk mengkodekan suatu kawasan mangrove, maka harus dilakukan dengan menggunakan objek VEGATN, dengan CATVEG = 7 (mangrove). Tepi arah laut dari kawasan mangrove yang dikodekan harus dikodekan menggunakan objek COALNE, dengan atribut CATCOA = 7 (mangrove). Contoh gambar 4.

Gambar 4 Tahapan Pembuatan *COALNE* Sumber: Hasil Pengolahan

Langkah selanjutnya digitasi Area (LNDARE) yang ada di LLT berbentuk area dengan memilih object acronym dan mengisi attributes sesuai dengan standar IHO yaitu S-57. Membuat acronym LNDARE (Land Area) pada pulau atau daratan, kemudian diberi nama sesuai toponiminya. Setiap objek area yang ada pada ENC harus mempunyai identitas vang jelas dan sesuai standar, dimana objek yang akan dibuat adalah suatu pulau dengan nama Sumatera. Karena yang dipilih area maka pada object acronym pilih land area (LNDARE) kemudian pada atribut kolom object name diisi dengan nama (Sumatera), sehingga terbentuklah suatu area pulau dengan nama Sumatera sehingga area yang ada pada cell ENC mempunyai identitas.

Gambar 5 Tahapan Pembuatan LNDARE Sumber : Hasil Pengolahan

Mendigitasi semua objek garis (line) Depth Contour yang ada di LLT, dengan memilih object acronym dan mengisi attributes sesuai dengan standar IHO yaitu S-57. Depth Contour adalah garis menghubungkan titik-titik vang vang mempunyai angka kedalaman sama dari suatu datum/referensi tertentu. proses digitasi kontur kedalaman dimana objek yang akan dibuat adalah garis kontur dengan kedalaman 0 meter, sehingga pada toolbar editor dipilih line dan object acronym dipilih depth contur (DEPCNT), Kemudian attributes kolom value of depth kontur (VALDCO) diisi 0 meter. Sehingga terbentuklah garis kontur dengan interval kadalaman kontur 0 meter. Contoh pada gambar 6.

Gambar 6. Tahapan Pembuatan *DEPCNT*. Sumber : Pengolahan Pribadi

Langkah selanjutnya mendigitasi semua objek yang ada di LLT berbentuk area (area) dengan memilih object acronym dan mengisi attributes sesuai dengan standar IHO yaitu S-57. Area kedalaman adalah area yang terikat didalam garis kontur yang mempunyai angka kedalaman sama dari suatu datum/referensi tertentu. Proses digitasi area kedalaman dimana objek yang akan dibuat adalah garis kontur dengan kedalaman 0 meter, sehingga pada toolbar editor dipilih area dan object acronym dipilih depth area (DEPARE), Kemudian attributes kolom depth range value -5.0 meter sampai dengan depth range value 0 diisi 0.0 meter. Sehingga terbentuklah area kedalaman dengan range kadalaman kontur -5.0 meter sampai dengan kedalaman 0 meter. Contoh pada gambar 7.

Gambar 7. Proses Digitasi DEPARE. Sumber : Pengolahan Pribadi

Selanjutnya mendigitasi semua objek yang ada di LLT dan dipeta raster berbentuk *point* (titik) dengan memilih *object acronym* dan mengisi *attributes* sesuai dengan standar IHO yaitu S-57. Contoh gambar 8.

bar 8. Proses Digitasi Point. Sumber : Pengolahan Pribadi

Pada gambar 8 proses digitasi point yang harus diperhatikan adalah koordinat buoy disesuaikan dengan LLT dan DSI (daftar suar Indonesia). Ketika mendigit boyspp, topmark, light pada toolbar editor dengan memilih point dan pada objek acronym dipilih buoy special purpose (BOYSPP) kemudian pada atribut diisi sesuai DSI seperti bentuk pelampung, kategori, warna. Setelah proses dianggap selesai selanjutnya di Master-slave Relationship (automatic) jadi ketika ditampilkan akan buovspp secara otomatis menjadi satu geometry.

Selanjutnya mendigitasi semua objek yang ada di LLT berbentuk *point* dengan memilih *object acronym* dan mengisi *attributes* sesuai dengan standar IHO yaitu S-57. Contoh gambar 9.

Gambar 9. Proses Digitasi *Sounding.* Sumber : Pengolahan Pribadi

PLI digabungkan atau ditempatkan diatas layer LLT yang telah didigitasi guna menginput perubahan objek dan kedalaman sounding yang tidak ada pada LLT, data LLT berbeda skala maka perlu dilaksanakan penyederhanaan dan generalisasi dari objek-objek yang ada. Karena tidak mungkin untuk menampilkan semua objek yang ada, dengan alasan peta yang dihasilkan nanti terlalu ramai (*over crowded*) dan bahkan tidak mudah dibaca/dimengerti. Seperti pada gambar 10.

Gambar 10. ProsesOverlay PLI. Sumber : Pengolahan Pribadi

Proses generalisai adalah suatu pemilihan atau penyederhanaan dalam penyajian dari unsur-unsur vang ditampilkan pada Hal ini peta. dimaksudkan untuk mempermudah membaca pada peta tersebut. Gambar 11 hasil proses generalisasi.

Gambar 11. Hasil Generalisasi. Sumber : Pengolahan Pribadi

Overlay citra satelit adalah menggabungkan atau menempatkan data citra satelit diatas layer lembar lukis teliti yang telah didigitasi. Hasil digitasi lembar lukis teliti di*overlay* dengan data citra satelit Sungai Jambi. Gambar 12.

Gambar 12. *Proses Overlay PLI.* Sumber : Pengolahan Pribadi

Setelah dioverlay seperti pada gambar 13 terlihat adanya dermaga baru yang tidak ada di LLT dan peta raster kemudian di laksanakan editing dan lakukan hal digitasi, yang serupa terhadap objek-objek yang tidak ada dipeta raster, objek-objek apa saja vang ditampilkan berdasarkan akan skala kompilasi peta.

Gambar 13. Hasil Digitasi Objek-objek Citra. Satelit Sumber : Pengolahan Pribadi

Proses *input* SBNP dari BPI nomor 35 *533/2017, nomor 36 *555/2017, nomor 38 *593/2017, karena ada penambahan suar yang belum dipetakan. Contoh gambar 14 proses *input* data BPI no.36 tahun 2017.

Gambar 14. *Input* Data dari BPI. Sumber : Pengolahan Pribadi

Gambar 14 merupakan proses *input bouy (beacon)* yang belum ada di LLT dan dipeta raster, dalam proses *input BOYSPP* harus diperhatikan koordinat disesuaikan dengan BPI dan pada attribut *BOYSPP* kolom information diisikan nomor DSI yang ada di BPI. hal ini perlu dilaksanakan karena suar merupakan alat bantu navigasi dilaut.

Setelah proses digitasi selesai maka dapat dilihat pada contoh Gambar 15 menunjukan sebuah *cell* ENC yang sudah terisi objek dan atributnya baik unsur titik, garis, maupun area.

Gambar 15. Hasil Digitasi dan Pengisian Attributes Object. Sumber : Pengolahan Pribadi

Proses *input magnetic variation* dilaksanakan agar mempermudah dalam pembacaan peta, nilai magnetic *variation* adalah 10 00' T 2019, mempunyai arti bahwa penyimpangan magnetic pada tahun 2019 sebesar 10 perubahan tahunan.

Gambar 16. *Input* Data dari BPI. Sumber : Pengolahan Pribadi

Proses input M QUAL untuk memberikan penilaian terhadap sumber data survei yang didapatkan sesuai CATZOC (Categori Zone of Confidence). Setiap survei mempunyai position acuracy dan kualitas yang berbeda sehingga membedakan dalam pemberian nilai M QUAL berdasarkan hasil data survei yang didapatkan pada peta laut indonesia nomor 48 Sungai Jambi dengan sumber data survei terbaru tahun

2017 yang mempunyai *position acuracy* ±20 meter sehingga mempunyai nilai *CATZOC* A2.

CATZOC dalam S-57 dimaksudkan untuk memberikan informasi kepada pengguna ENC mengenai akurasi dan kualitas data diwilayah perairan tertentu. ENC Sungai Jambi mempunyai *M_QUAL Zone Of Confidence* A2 karena berdasarkan hasil data survei, dalam penilaian berdasarkan *CATZOC*. Gambar 17 Hasil input dua *M_QUAL*.

Gambar 17. Hasil *input M_QUAL* pada ENC. Sumber : Pengolahan Pribadi

Pada proses validasi *cell* ENC dikelompokan jadi beberapa klasifikasi sesuai dengan standarisaasi S-58 (*critical errors, errors* dan *warning errors*).

Critical Errors merupakan kesalahan yang akan membuat ENC tidak dapat digunakan di ECDIS atau menyebabkan ECDIS mogok, atau menyajikan data yang tidak aman untuk navigasi.

Gambar 18. Proses Validasi *Critical Error.* Sumber : Pengolahan Pribadi

Error yang diperlihatkan pada gambar 18 memberikan informasi sebagai berikut :

"If the combined coverage of all DEPARE, DRGARE, FLODOC, HULKES, LNDARE, PONTON and UNSARE feature objects is Not equal to the combined coverage of all M_COVR meta objects where CATCOV is Equal to 1 (coverage available)".

Ketika dicek didalam dokumen S-58, informasi yang diberikan adalah sebagai berikut :

519a	If the combined coverage of all DEPARE, DRGARE, FLODOC, HULKES, LNDARE, PONTON and UNSARE reature objects is Not equal to the combined coverage of all <u>M_COVR</u> meta objects where CATCOV is Equal to 1 (coverage available).	Skin of the earth (Group1) objects do not cover the data coverage (M_COVR = 1).	Amend Group1 object limits to match data coverage.	3.10.1	c
------	---	---	--	--------	---

Gambar 19. Informasi *Critical Error* pada Dokumen S-58 *Point* 519a.

Jika cakupan gabungan dari semua DEPARE, DRGARE, FLODOC, HULKES, LNDARE, PONTON dan objek fitur UNSARE tidak sama dengan cakupan semua objek meta gabungan dari M COVR di mana CATCOV sama dengan 1 (cakupan tersedia). Maksudnya Grup setiap obiek 1 tidak boleh bertampalan atau tumpang tindih, dan tidak boleh juga ada yang kosong. Beberapa proses yang telah disebutkan diatas dapat dilakukan secara berulangulang hingga berulang-ulang hingga hasil report Critical Errors sudah tidak ada atau lolos dalam validasi.

Gambar 20. Hasil Validasi Critical Error.

Dalam tahapan ini harus menjamin bahwa *file dataset* hasil akhir tidak melebihi 5 *megabyte*, dan juga tidak terlalu kecil agar tidak terlalu banyak nomor *cell*. Proses *group sounding* yaitu merubah dari keseluruhan jumlah *sounding* hingga menjadi 1 *group sounding* yang nantinya memperkecil ukuran *dataset*.

Pada tahap *Scamin* yaitu memberikan nilai *scamin* (skala minimum) untuk setiap objek, kecuali objek yang termasuk *group* 1 atau *skin of the earth*, sehingga menyaring setiap objek agar tergambar sesuai skala minimumnya dan tampilan pada layar tidak *over crowded*.

Gambar 22. Proses Scamin.

Setelah dilaksanan proses scamin maka pada ENC akan mempunyai batas skala minimum untuk menampilkan objek-objek yang ada, pada gambar 23 perbedaan ENC yang belum dan yang sudah di*scamin* dengan ENC.

Gambar 23. Perbedaan ENC sebelum dan sesudah *Scamin.*

Dari seluruh proses pembuatan ENC seperti, pembuatan *cell* baru, digitasi, generalisasi, kompilasi, pengkodean atribut objek, scamin dan validasi di dapat hasil akhir seperti ENC gambar. dikerjakan yang sebenarnya masih berupa file dengan format ".hob". Agar file tersebut dapat menjadi cell ENC dengan format ".000" maka perlu meng-export semua objek.

Gambar 24. Hasil pembuatan *Cell* ENC ID 50048B.

Penomoran cell ENC disesuaikan dengan nomor peta laut kertas terkait. Sebagai contoh, misalnya cell ENC di Sungai Jambi, maka penomorannya menjadi ID50048B karena area Sungai Jambi ada pada Peta Laut Indonesia Nomor 48, dan di belakang penomoran diberi B yang berarti cell ENC dengan ID00048 sudah ada. Exchange Set merupakan pertukaran data set yaitu merubah *cell* ENC ID50048B yang masih berupa file .Hob menjadi .000. Dalam proses pertukaran set ini ada beberapa tahapan diantaranya :

1. Buat *M_COVER* baru lalu pilih nama produknya yaitu ENC 3.1.

2. Beri nama Produk sesuai peta yang akan diolah, ID-Jawatan Hidro-Oseanografi, besaran skala navigasinya 1:12000 kategori *Harbour*.

3. Ketika disesuaikan dengan skala kompilasi, skalanya menjadi 1:12000, bagian datum pilih *mean sea level*, bagian *sounding* pilih *mean lower low water*, dan pada bagian *sounding rounding* diisi IHO.

4. Masukan koordinat untuk batasan area.

5. Pada bagian *Exchange set creation* pilih *create new exchange set* karena membuat baru. Setelah proses diatas dilaksanakan maka akan muncul tampilan seperti gambar 25.

Gambar 25. Gambar Hasil *Exchange Set.* Sumber : Pengolahan Pribadi

Tampilan pada *SeeMyENC*, disamping menampilkan simbol, singkatan, dan warna, juga menampilkan jalur perencanaan pelayaran kapal. Tampilan peta dapat secara otomatis (seperti: tampilan standar, posisi kapal aktual, serta jalur rencana dan jalur yang telah dilalui kapal), dan manual.

ambar 26. Tampilan ENC pada SeeMyENC.

KESIMPULAN DAN SARAN

Kesimpulan

Dari hasil proses pembuatan *cell* ENC ID50048B.000 Sungai Jambi menggunakan perangkat lunak *Caris* S-57 *Composer* pada dapat disimpulkan beberapa hal sebagai berikut :

a. Proses pembuatan *cell* ENC ID50048B.000 sudah selesai, sehingga dapat memenuhi ketersediaan ENC di

Perairan sungai Jambi dengan skala *Harbour*.

b. Karakteristik perangkat lunak *Caris* S-57 *Composer* dalam pembuatan *cell* ENC Perairan Sungai Jambi harus dipenuhi *attribute Mandatory* objek dan simbol-simbol sehingga *cell* ENC tersebut dapat memberikan informasi yang akurat dan memenuhi standar IHO.

Saran

a. Untuk memperoleh produk *cell* ENC yang maksimal maka diperlukan perangkat lunak lain sebagai pembanding untuk melakukan proses validasi, karena bagian dari *Quality assurance*.

b. Dalam proses pembuatan *cell* ENC diperlukan data survei terbaru yang memenuhi standar ketelitian IHO dan data-data pendukung lainya seperti data batimetri (X,Y,Z), data Csar data citra satelit dan BPI.

UCAPAN TERIMA KASIH

Terimakasih kepada STTAL yang telah menyediakan Laboratorium Hidros STTAL sebagai tempat pengolahan dan analisa. Terimakasih kepada bapak dosen Heru Kurniawan, Eko Bayu Dharma Putra.

DAFTAR PUSTAKA

Abdillah, M. H. (2018). Pembuatan Peta Laut Berdasarkan S-4 dan S-57 International Hydrographic Organization (IHO) Menggunakan Perangkat Lunak Arcgis 10.4.1.
Bogor: Fakultas Teknik, Program Studi Teknik Geodesi, Universitas Pakuan Bogor.

- Amarona, M. Q. (2009). ENC dan ECDIS, Dinas Hidro-Oseanografi TNI-AL.
- Anwar, K. (2013), Manfaat ENC dan ECDIS", Buletine Pushidros TNI AL, Edisi 01/XIII, 7 sampai 14.
- Butler, M. J. A., M.C. Mouchot, V. Barale & C Le Blanc. (1988). The Aplication of Educational Texbooks Series.
 ITC, Enshede, Netherlands. FAO FisheriesTechnical Paper. 295 p.
- IHO. (2000). IHO Transfer Standarts for Digital Hydrographic Data (Edition 3.1). IHO publication S-57. Monaco: International Hydrographic Organization.
- IHO. (2000). S-57 Appendix B Product Spesification. Monaco: International Hydrographic Organization.
- IHO, (2015). Data Protection Scheme,IHO Publication S-63, International Hydrographic Bureau, Monaco.
- IHO. (2017). Electronic Navigational Charts (ENCs) "Production, Maintenance and Distribution Guidance". IHO Publication S-65 Edition 2.1.0. Monaco: International Hydrographic Organization.
- IHO, (2015b), List of Data Producer Codes, IHO Publication S-62, International Hydrographic Bureau, Monaco.

- IHO, (2012). Production, Maintenance, and Distribution Guidance, IHO Publication S-65, International Hydrographic Organization.
- IHO. (2011). Recommended ENC Validation Checks, IHO Publication S-58, International Hydrographic Bureau, Monaco.
- IHO. (2018). Regulations of The IHO For International (INT) Charts and Charts Spesifications Of The IHO. IHO Publication S-4 Edition 4.8.0. Monaco: International Hydrographic Organization.
- IHO. (2010b). Specifications for Chart Content and Display Aspects of ECDIS, IHO Publication S-52, International Hydrographic Bureau, Monaco.
- Kraak, M. J., & Ormeling, F. (2003). Cartography: Visualization of Geospatial DataSecond Edition. Belanda: Pearson Education Limited.
- Prihandito, A. (1989), Kartografi, Yogyakarta: PT Mitra Gama Widya.
- Priyadi, A. (2015). *Pembuatan Port ENC di Tanjung Priok*. Tugas Akhir. Jakarta: STTAL.
- Suyoto, R. H. (2016). Pembuatan ENC Menggunakan Perangkat Lunak Caris S-57 Composer (Studi Kasus Perairan Teluk Banten). Tugas Akhir. Jakarta: STTAL.

IMO. (2020). Brief History of IMO. (Online), (http://www.imo.org/en/About/Histor yOfIMO, diakses 15 Mei 2022).

- Jdih.dephub.go.id (2019). Tentang Penetapan Perairan Wajib Pandu Kelas I Perairan Pelabuhan Talang Duku Dan Pelabuhan Muara Sabak Provinsi Jambi (*Online*), (https://jdih.dephub.go.id/assets/uud ocs/kepmen/2019/KM_262_TAHUN _2019.pdf, diakses 25 Mei 2022 pada pukul 19.00 WIB).
- Pelindo.co.id, (2015). "Pelabuhan Jambi" Pelindo dalam *website* (*Online*), (https://pelindo.co.id/port/pelabuhan -jambi,2015, diakses 3 Juni 2022 pada pukul 16.00 WIB).

p-ISSN 2460 - 4623 e-ISSN 2716 - 4632