Karakteristik Natuna Off-Shelf Current (NOC) Berdasarkan Komputasi Data Laut Skala Kecil Berbasis Awan

Characteristics of Natuna Off-Shelf Current (NOC) on Cloud-Based Small-Scale Marine Data Computation

Authors

  • Agung Kurniawan Laboratorium Hidro-Oseanografi, Sekolah Tinggi Teknologi Angkatan Laut (STTAL) Jakarta, Indonesia
  • Widodo Setiyo Pranowo Pusat Riset Iklim dan Atmosfer, Badan Riset dan Inovasi Nasional (BRIN), Bandung, Indonesia https://orcid.org/0000-0002-5798-4181
  • Nurul Khakim Fakultas Geografi, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Agus Iwan Santoso Pusat Hidro-Oseanografi TNI Angkatan Laut, Jakarta, Indonesia
  • Ezikri Yasra Laboratorium Hidro-Oseanografi, Sekolah Tinggi Teknologi Angkatan Laut (STTAL) Jakarta, Indonesia
  • Kurnia Malik Program Studi Hidrografi, Sekolah Tinggi Teknologi Angkatan Laut (STTAL), Jakarta, Indonesia

DOI:

https://doi.org/10.37875/chartdatum.v9i1.259

Keywords:

Natuna Off-Shelf Current (NOC), Komputasi awan, Google Earth Engine, HYCOM, Arus

Abstract

Morfologi perairan Laut Natuna Utara yang unik menghasilkan arus yang memiliki kecepatan yang signifikan sebagai perpanjangan dari Vietnam Coastal Jest (VCJ) yang disebut sebagai Natuna Off-Shelf Current (NOC). Identifikasi NOC dilakukan untuk melihat pola arus pada setiap musim serta pengaruh fenomena ENSO terhadap pola arus yang dihasilkan. Visualisasi dilakukan menggunakan pendekatan komputasi awan berkecepatan tinggi diproses melalui platform google earth engine (GEE) dengan menggunakan input data dari HYCOM. Artikel ini bertujuan untuk melakukan identifikasi dan visualisasi NOC menggunakan pendekatan data berbasis raster yang diolah menggunakan komputasi awan di GEE. Tahun kajian sebagai periode observasi diantaranya adalah periode La Niña tahun 2022, periode El Niño kuat pada tahun 1997, dan tahun netral pada tahun 1996. Secara visual NOC terbentuk akibat perpanjangan VCJ pada bulan musim barat, dan terlihat di semua tahun kajian observasi. Arus paling signifikan dijumpai pada musim barat tahun 1996 (tahun netral) dengan kecepatan 1,7 m/detik di lapisan permukaan, 1,4 m/detik di kedalaman 50m untuk bulan November 1996 (tahun netral), dan 1,4 m/detik di kedalaman 100m pada November 1997 (periode ENSO) dan Februari 1996 (tahun netral).

Downloads

Download data is not yet available.

References

Amani, M., Ghorbanian, A., Ahmadi, A. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). “Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13(September), 5326–50. https://doi.org/10.1109/JSTARS.2020.3021052.

Chu, P. C., Edmons, N. L., & Fan, C. (1999). Dynamical Mechanisms for the South China Sea Seasonal Circulation and Thermohaline Variabilities. Journal of Physical Oceanography, 29(11), 2971–89. https://doi.org/10.1175/1520-0485(1999)029<2971:DMFTSC>2.0.CO;2.

Fang, G., Wang, Y., Wei, Z., Fang, Y., Qiao, F., & Hu, X. (2009). Interocean Circulation and Heat and Freshwater Budgets of the South China Sea Based on a Numerical Model. Dynamics of Atmospheres and Oceans 47(1–3), 55–72. https://doi.org/10.1016/j.dynatmoce.2008.09.003.

Fang, W., Fang, G., Shi, P., Huang, Q., & Xie, Q. (2002). “Seasonal Structures of Upper Layer Circulation in the Southern South China Sea from in Situ Observations. Journal of Geophysical Research: Oceans, 107(11), 1–12.

https://doi.org/10.1029/2002jc001343

Hariyadi., Hutabarat, J., Sugianto, D. N., Noercholis, M. F. M., Prasetyani, N. D., Pranowo, W. S., Kunarso., Wetchayount, P., & Wirasatriya, A. (2021). Natuna Off-Shelf Current (NOC) Vertical Variability and Its Relation to ENSO in the North Natuna Sea. Ilmu Kelautan: Indonesian Journal of Marine Sciences, 26(2), 63–70.

https://doi.org/10.14710/IK.IJMS.26.2.63-70.

Hu, N. T. A. (2010). Semi-Enclosed Troubled Waters: A New Thinking on the Application of the 1982 Unclos Article 123 to the South China Sea. Ocean Development and International Law, 41(3), 281–314.

https://doi.org/10.1080/00908320.2010.499306.

Khaldun, M. H. I., Wirasatriya, A., Suryo, A. A. D., & Kunarso. (2018). The Influence of Indian Ocean Dipole (IOD) on the Variability of Sea Surface Temperature and Precipitation in Sumatera Island. IOP Conference Series: Earth and Environmental Science, 165(1). https://doi.org/10.1088/1755-1315/165/1/012008.

Kavzoglu, T., & Goral, M. (2022). Google Earth Engine for Monitoring Marine Mucilage: Izmit Bay in Spring 2021. Hydrology, 9(8), 1–16.

https://doi.org/10.3390/hydrology9080135.

Li., Jindian, X., Chunsheng, J., Risheng, W., & Xiaogang, G. (2003). Annual Variation of Sea Surface Height, Dynamic Topography and Circulation in the South China Sea - A TOPEX/Poseidon Satellite Altimetry Study. Science in China, Series D: Earth Sciences, 46(2), 127–38. https://doi.org/10.1360/03yd9012.

Liu, K. K., Chao, S. Y., Shaw, P. T., Gong, G. C., Chen, C. C., & Tang, T. Y. (2002). Monsoon-Forced Chlorophyll Distribution and Primary Production in the South China Sea: Observations and a Numerical Study. Deep-Sea Research Part I: Oceanographic Research Papers, 49(8), 1387–1412. https://doi.org/10.1016/S0967-0637(02)00035-3.

Qi-zhou, H., Wen-zhi, W., Li, Y. S., & Li, C. W. (1994). Current Characteristics Of The South China Sea. Oceanology of China Seas, 1(1982), 39–47. https://doi.org/10.1007/978-94-011-0862-1_5.

Qi, J., Du, Y., Chi, J., Yi, D. L., Li, D., & Yin, B. (2022). Impacts of El Niño on the South China Sea Surface Salinity as Seen from Satellites. Environmental Research Letters, 17(5). https://doi.org/10.1088/1748-9326/ac6a6a.

Ramamurthy, M. (2016). Data-Driven Atmospheric Sciences Using Cloud-Based Cyberinfrastructure: Plans, Opportunities, and Challenges for a Real-Time Weather Data Facility. Cloud Computing in Ocean and Atmospheric Sciences. Elsevier Inc. https://doi.org/10.1016/B978-0-12-803192-6.00004-9.

Salau, O. R., Schneider, B., Park, W., Khon, V., & Latif, M. (2012). Modeling the ENSO Impact of Orbitally Induced Mean State Climate Changes. Journal of Geophysical Research: Oceans, 117(5), 1–14.

https://doi.org/10.1029/2011JC007742.

Vance, T. C., Wengren, M., Burger, E., Hernandez, D., Kearns, T., Medina-Lopez, E., Merati, N., O’Brien, K., O’Neil, J., Potemra, J. T., Signell, R. P., & Wilcox, K. (2019). From the Oceans to the Cloud: Opportunities and Challenges for Data, Models, Computation and Workflows. Frontiers in Marine Science, 6(APR), 1–18. https://doi.org/10.3389/fmars.2019.00211.

Zeng, L., Wang, D., Chen, J., Wang, W., & Chen, R. (2016). SCSPOD14, a South China Sea Physical Oceanographic Dataset Derived from in Situ Measurements during 1919-2014. Scientific Data, 3, 160029. https://doi.org/10.1038/sdata.2016.29.

Zeng, X., Peng, S., Li, Z., Qi, Y., & Chen, R. (2014). A Reanalysis Dataset of the South China Sea. Scientific Data, 1, 1–11.

https://doi.org/10.1038/sdata.2014.52.

Zhu, J., Hu, J., & Zheng, Q. (2022). An Overview on Water Masses in the China Seas. Frontiers in Marine Science 9(August), 1–12. https://doi.org/10.3389/fmars.2022.972921.

Zu, T, Xue, H., Wang, D., Geng, B., Zeng, L., Liu, Q., Chen, J., & He, Y. (2019). Interannual Variation of the South China Sea Circulation during Winter: Intensified in the Southern Basin. Climate Dynamics, 52(3–4), 1917-33. https://doi.org/10.1007/s00382-018-4230-3.

Downloads

Published

2023-07-27

How to Cite

Kurniawan, A., Pranowo, W. S., Khakim, N., Santoso, A. I., Yasra, E., & Malik, K. (2023). Karakteristik Natuna Off-Shelf Current (NOC) Berdasarkan Komputasi Data Laut Skala Kecil Berbasis Awan: Characteristics of Natuna Off-Shelf Current (NOC) on Cloud-Based Small-Scale Marine Data Computation . Jurnal Chart Datum, 9(1), 61–76. https://doi.org/10.37875/chartdatum.v9i1.259